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ABSTRACT 

Clinical translation of stem cell research promises to 
revolutionize medicine. Challenges remain toward better 
understanding of stem cell biology and cost-effective 
strategies for stem cell manufacturing. These challenges call 
for novel engineering toolsets to study stem cell behaviors 
and the associated stemness. Towards this goal, we are 
developing a computer vision based system to automatically 
and reliably follow the behaviors of individual stem cells in 
expanding populations. This paper reports on significant 
progress in our development. In particular, we present a 
machine-learning approach for detecting spatiotemporal 
mitosis events without image segmentation. This approach 
not only improves tracking performance, but can also 
independently quantify mitoses and cellular divisions. We 
also employ bilateral filtering to improve cell detection 
performance. We demonstrate the effectiveness of this 
system on tracking C2C12 mouse myoblast stem cells. 

Index Terms— Computer vision, tracking, time-lapsed 
microscopy, stem cells, stemness

1. INTRODUCTION 

Clinical translation of stem cell research holds the promise 
to revolutionize medicine. Beyond blood stem cell 
transplantation, which has been an established clinical 
therapy for decades, other stem cell sources, including fetal 
and adult stem cells, are currently under investigation for 
use in a broad array of applications. These applications 
include the treatment of heart disease, Parkinson’s disease, 
stroke, and extensive tissue regeneration from trauma and 
disease. However, significant challenges remain to be 
addressed to make fetal or adult stem cell based therapies 
effective, safe, and predictable, as well as to improve the 
established stem cell therapies. Two universal challenges are 
the need for a better understanding of basic stem cell 
biology, and the need for improved and cost-effective 
strategies to produce sufficient stem cell numbers in vitro, to 
meet both current and expected clinical demands. 

Basic biological discovery experimentation requires new 
engineering toolsets to reliably and automatically and 
reliably follow the complete spatiotemporal histories of 
individual stem cells in population environments, as they 

divide into daughter cells. With this information, which 
includes cell family trees (or lineage maps), division times, 
motion trajectories, quiescence and death, investigators will 
be able to more efficiently study cell behaviors in response 
to varying culture conditions. Similarly, stem cell 
production or manufacturing processes, which are used to 
expand relatively small numbers of stem cells into the 
millions required for therapeutic delivery, also demand 
innovative toolsets to automatically and reliably monitor 
cell numbers in vitro in real-time. Predictive models can be 
created with this information, which can be used to both 
optimize cell culture expansion methodologies and to 
provide quality control during production.  

To realize these much-needed toolsets, we are developing a 
computer vision based cell tracking system that can track 
each and every cell in a dynamic and expanding population 
imaged with phase-contrast time-lapsed microscopy. The 
goal is to be able to automatically measure and report the 
behavior of each cell in a population in real-time. These 
behaviors include cell movement, division, quiescence, 
death, and eventually differentiation. Collectively these 
behaviors reflect stemness, i.e., the self-renewal capability 
of stem cells. Achieving this goal requires overcoming 
challenges such as increasing cell densities during 
population expansions, cells leaving/entering the field of 
view, and discriminating between crossing/overlapping cells.   

Continuing the footprints of our previous developments [1], 
[2], we present significant improvements to our modular 
tracking system (Fig. 1). These improvements address the 
unique challenges for tracking stem cells and quantifying 
the associated stemness metrics.  

Fig. 1. Tracking system overview 
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One major improvement is the incorporation of a machine 
learning based mitosis event detector, which computes the 
probability of the occurrence of mitosis events at any 
spatiotemporal location in the image sequence. This 
information is useful for two purposes: 1) to compute an 
energy term in the level-set based cell tracker to improve the 
tracking performance of cell divisions; and 2) to inform the 
track compiler and linker of the locations where mitoses 
occur, thus assisting the correct establishment of mother-
daughter relations among cells. This module improves the 
robustness of the tracking of cell divisions, which is critical 
for the reliable construction of cell lineages.  

Another improvement goes to the cell detector, where we 
utilize bilateral filtering to reduce noise, as well as to 
smooth the filopodia of C2C12 cells that may interfere with 
detection. We also employ an edge-based approach to detect 
mitotic cells near interphase or prophase. 

The following sections elaborate on these improvements, 
and demonstrate the effectiveness on tracking and analyzing 
the lineage of C2C12 mouse myoblast stem cells. We refer 
the readers to [1], [2] for an overview of our system and 
details on the other modules. 

2. TRACKING SYSTEM 

 2.1. Spatiotemporal Mitosis Event Detection 

While the appearances of stem cells could be complex and 
time-varying, cells that undergo mitosis typically exhibit a 
series of distinctive and highly-regulated changes, which are 
observable using phase-contrast microscopy. These changes 
include an initial increase of brightness, an increase of 
circularity, and a decrease of size. These are followed by a 
reverse process and eventually cytokinesis occurs, whereby 
a cell completes its division into two daughter cells. 

These phenomena could be captured by classifying several 
features extracted from the segmented cell regions [1], [2], 
[7]. However, the robustness of such approaches is both 
dependent on and limited by the accuracy of segmentation, 
which may vary among different cell types. To improve 
robustness, we propose a segmentation-free approach for 
detecting mitosis using machine learning. We consider 
mitoses as spatiotemporal event patterns, and aim to detect 
them in any spatiotemporal volumes of appropriate scales in 
the image sequence. For this purpose, we trained an efficient 
cascade classifier using collected examples. 

2.1.1. Training Examples 

To collect positive examples, we manually identified 295 
mitosis events in one image sequence. We extracted 
spatiotemporal sub-volumes of 24×24×5 pixels centered 
near telophase, where the mitotic cell forms a distinctive 

figure-eight structure in most cases. Volumes of this size are 
sufficient to capture salient features of mitosis events. We 
create negative examples automatically, both offline and 
online, from the training sequences excluding the identified 
sub-volumes containing mitoses. We acquire an initial set of 
1,000,000 negative examples offline. Among these, 1,380 
examples were extracted at the cell centroids detected using 
the cell detector. We rotate these examples at 90°, 180° and 
270° along the time axis to produce 4,140 additional 
examples. The remaining 994,480 examples were generated 
by randomly sampling the spatiotemporal sub-volumes from 
the training sequences. During training iterations, we can 
bootstrap supplementary negative examples online by 
running the already-trained partial classifier on the training 
sequence and extracting all false detections. 

During mitosis, a cell may divide at any orientation. To 
avoid the curse of dimensionality, it is desirable to align the 
positive examples to reduce data complexity. However, it is 
both undesirable and unrealistic to align the examples 
perfectly, as it would require us to train classifiers for all 
specific orientations. To avoid artifacts induced by image 
registration, we utilize the following approach. First, we 
binarize the middle frame of each positive example using 
Otsu thresholding. Then, we classify each example into one 
of two categories, [0, 90 ) or [90 , 180 ), according to the 
orientation of the major axis of the connected component at 
the center. We flip the examples in the second category 
horizontally, such that all examples have orientations in the 
range of [0, 90 ). We double the size of the positive training 
set with 180 -rotated copies of the examples. This procedure 
avoids interpolation and preserves the original pixel 
intensities. The resulting examples cover 50% of the space 
of possible orientations. Due to the rotational symmetry of 
the Haar-like filters, once a classifier is trained on the 
aligned examples, the classifier that covers the other 
orientations can be derived automatically. 

2.1.2. Features 

Inspired by the work of Ke et al [3], we draw on the concept 
of integral volumes. An integral volume  at pixel location 

 and time  is evaluated as the sum of pixels at 
coordinates less than or equal to :

,

Fig. 2. Volumetric Haar-like filters used to extract features 
for mitosis detection. The features are computed by 
subtracting the sum of pixel values in the black boxes from 
the sum of pixel values in the white boxes. 
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where  is a pixel in the original image at time .
The integral volume representation allows a set of 
volumetric Haar-like filters (Fig. 2) to be evaluated 
efficiently using array lookups and subtractions. By 
applying these filters to a training template at various scales 
and aspect ratios, we obtain an over-complete set of 80,364 
candidate features.  

Ke et al showed that computing features using the original 
pixel intensities led to poor performance, possibly due to 
shifts of intensity levels across frames. Instead, they relied 
on the optical flow of the training images to extract features. 
However, optical flow can be noisy and unreliable on 
highly-deformable objects such as cells. Therefore, we 
choose to use the local variance in the original image, which 
is invariant against shifts in intensity: 

where  represents a local neighborhood of size . The 
local variance measures the contrast of local image textures, 
which captures the appearance and morphological changes 
of a cell during mitosis (Fig. 3). 

2.1.3. Training the Classifier 

Classifiers such as neural networks and the support vector 
machine are computationally expensive. Viola and Jones 
proposed the strategy of coarse-to-fine classification using a 
cascade classifier [5], which was proven to be highly 
efficient and effective. The cascade classifier consists of a 
sequence of AdaBoost ensemble classifiers with increasing 
complexity. This allows the majority of negative samples to 
be rejected quickly at early cascade nodes, thus achieving 
efficient classification. 

However, the AdaBoost classifier suffers from a lengthy 
training time due to its tight coupling of two processes: 
feature selection and ensemble classifier formation. To 
overcome this drawback, Wu et al [6] proposed a fast 

cascade learning framework, which decouples them into the 
forward feature selection (FFS) algorithm, and the linear 
asymmetric classifier (LAC). This approach reduces the 
training time by two orders of magnitude, enabling us to 
train the classifier in a reasonable amount of time despite the 
large number of examples and candidate features. 

2.1.4. Mitosis Detection 

We conduct mitosis detection during tracking at the same 
scale as the training examples. This is feasible because the 
image acquisition was performed with identical protocol, 
and because the integral volume can be computed 
sequentially (frame-by-frame) using simple recursions. 
Specifically, we perform detection by classifying all 
24×24×5 sub-volumes as either mitosis or non-mitosis in a 
sliding temporal window of 5 frames. We convolve the 
classification result with a 3-D Gaussian kernel with 
diagonal covariance, and scale the result to the range of 

 to represent the probability of mitosis events. As cell 
tracking proceeds, we load the next frame while dropping 
the oldest frame in the temporal queue, and update the 
integral volume accordingly. The numerical precision of the 
integral volume degrades gradually with sequential updates. 
Therefore, we recompute the integral volume from scratch 
periodically to maintain its precision. 

2.2. Bilateral Filtering and Cell Detection 

Now we detail the improved cell detector with bilateral 
filtering. The bilateral filter is a nonlinear filter that 
smoothes a signal while preserving strong edges. It is a 
noniterative alternative to anisotropic diffusion. The filter 
output  at each pixel is a weighted average of its 
neighbors. The weight of each neighbor decreases with its 
distance to the center pixel in space and intensity:

where ; ,  are Gaussian functions with 
standard deviations  and , respectively. They control how 
much a neighbor is weighted due to spatial distance and 
intensity difference. Brute-force computation of the bilateral 
filter is expensive. We adopt the fast algorithm proposed by 
Paris and Durand [4], which achieves acceleration by 
downsampling and utilizing linear convolution in the joint 
space of space and intensity.  

 After bilateral-filtering, we apply the rolling-ball filter [2] 
to extract non-mitotic cells, which appear as darker regions 
surrounded by brighter halos. The rolling-ball filter is a 
grayscale morphological filter that is related to the top-hat 
filter by , where  is the 

Fig. 3. A training example for mitosis event detection at the 
canonical orientation. The top row shows the original image 
frames; the bottom row shows the local variance maps. 
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radius of the rolling ball, and  is a non-flat (half-)ball-
shaped structuring element with radius . The parameter 
is roughly equal to the average radius of cells to be detected. 

Mitotic cells near interphase or prophase appear as bright, 
round objects. We employ an edge-based procedure to 
detect them, in three steps: 1) apply Canny edge detector to 
extract edges; 2) find and fill regions that are surrounded by 
closed edges; and 3) select the regions with solidity greater 
than , eccentricity smaller than , mean intensity 
greater than , and size within a specified range as 
mitotic cell regions. Here,  and  are the mean and 
standard deviation of the image, respectively. 

3. CELL CULTURE AND IMAGING 

 C2C12 myogenic precursor cells (American Type Culture 
Collection, Manassas, VA) were observed with a Zeiss 
Axiovert 135TV inverted microscope using a 5X, 0.15 N.A. 
objective with phase optics (Carl Zeiss, Inc., Thornwood, 
NY).  Images were acquired every 5 minutes for 92.5 hours 
using a 12-bit Qimaging Retiga EXi Fast 1394 CCD camera, 
at 500ms exposure with a gain of 1.01.  Each image consists 
of 1392×1040 pixels with a resolution of 19 μm/pixel. 

4. RESULTS 

We tested the proposed mitosis event detector as a 
standalone tool on two image sequences independent of the 
training sequence. Fig. 4 shows the mitosis probability 
output of the detector overlaid on one of the sequences. The 
detector achieved good detection results in these sequences 
as per visual inspection. For quantitative assessment, we 
consider regions with detected mitosis probabilities greater 
than  as positive mitoses. Comparing to manual detection, 
the automated detector achieved precision and recall rates of 
90.4% and 94.1%, respectively. We also evaluated the cell 
detection accuracy. We found that bilateral filtering (with 
parameters  and ) reduces false positives by 
11.3%, and also improves cell localization accuracy. 

We applied the improved tracking system to track the 
C2C12 stem cells in the above two sequences, and 
constructed the corresponding lineage maps (Fig. 5). The 

lineage map contains important metrics such as symmetry
and division time. These metrics are useful for the predictive 
modeling of stem cell population expansions, as well as the 
design and optimization of adaptive subculturing strategies. 

5. CONCLUSION 

We described an improved cell tracking system for tracking 
a large number of cells in expanding populations imaged 
with phase-contrast microscopy. The improvements include 
a novel machine-learning approach to detect mitosis events 
without segmentation, and a more reliable cell detector with 
bilateral filtering. The system and its modules provide 
useful toolsets to study stem cell behaviors, as well as to 
other areas such as tissue engineering and drug discovery.  
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Fig. 5. Tracking result and the associated lineage map of 
C2C12 cells. Left) Spatiotemporal cell trajectories. Different 
colors represent different family trees. Right) Lineages of 
the cells that appear in the first frame and their descendants.  

Fig. 4. Result of spatiotemporal mitosis event detection for 
an entire sequence (left), and in one frame (right). 
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